Face-Width of Pfaffian Braces and Polyhex Graphs on Surfaces

نویسندگان

  • Dong Ye
  • Heping Zhang
چکیده

A graph G with a perfect matching is Pfaffian if it admits an orientation D such that every central cycle C (i.e. C is of even size and G − V (C) has a perfect matching) has an odd number of edges oriented in either direction of the cycle. It is known that the number of perfect matchings of a Pfaffian graph can be computed in polynomial time. In this paper, we show that every embedding of a Pfaffian brace (i.e. 2-extendable bipartite graph) on a surface with a positive genus has face-width at most 3. Further, we study Pfaffian cubic braces and obtain a characterization of Pfaffian polyhex graphs: a polyhex graph is Pfaffian if and only if it is either non-bipartite or isomorphic to the cube, or the Heawood graph, or the Cartesian product Ck ×K2 for even integers k > 6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings of Pfaffian Braces and Polyhex Graphs

Let G be a graph admitting a perfect matching. A cycle of even size C is central if G − C has a perfect matching. Given an orientation to G, an even cycle C is oddly oriented if along either direction of traversal around C, the number of edges of C with the direction as the same as the traversal direction is odd. An orientation of G is Pfaffian if every central cycle of G is oddly oriented. A g...

متن کامل

Pfaffian labelings and signs of edge colorings

We relate signs of edge-colorings (as in classical Penrose’s result) with “Pfaffian labelings”, a generalization of Pfaffian orientations, whereby edges are labeled by elements of an Abelian group with an element of order two. In particular, we prove a conjecture of Goddyn that all k-edge-colorings of a k-regular Pfaffian graph G have the same sign. We characterize graphs that admit a Pfaffian ...

متن کامل

Flexibility of Polyhedral Embeddings of Graphs in Surfaces

Whitney s theorem states that connected planar graphs admit essentially unique embeddings in the plane We generalize this result to em beddings of graphs in arbitrary surfaces by showing that there is a function N N such that every connected graph admits at most g combina torially distinct embeddings of face width into surfaces whose Euler genus

متن کامل

Finding Shortest Non-separating and Non-contractible Cycles for Topologically Embedded Graphs

We present an algorithm for finding shortest surface non-separating cycles in graphs embedded on surfaces in O(gV 3/2 log V + gV ) time, where V is the number of vertices in the graph and g is the genus of the surface. If g = o(V ), this represents a considerable improvement over previous results by Thomassen, and Erickson and HarPeled. We also give algorithms to find a shortest non-contractibl...

متن کامل

Matching signatures and Pfaffian graphs

We prove that every 4-Pfaffian that is not Pfaffian essentially has a unique signature matrix. We also give a simple composition Theorem of 2r-Pfaffian graphs from r Pfaffian spanning subgraphs. We apply these results and exhibit a graph that is 6-Pfaffian but not 4-Pfaffian. This is a counter-example to a conjecture of Norine [5], which states that if a graph G is k-Pfaffian but not (k − 1)-Pf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014